Eta Reduction

The purpose of eta reduction (also written \(\eta\)-reduction) is to drop an abstraction over a function to simplify it. This is possible when there is nothing more that a function can do to its argument. For example, imagine that we have a simple function \( f\ x = g\ x \). Both \(g\) and \(f\) take the same argument, \(x\), and the function application function results in the same value (specified by the equality symbol). Since both \(f\) and \(g\) take the same argument and produce the same result, we can simplify the equation to just \(f = g\). In lambda calculus, this simplification is called \(\eta\)-reduction. ...

September 27, 2018 · 3 min · Kevin Sookocheff